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Abstract--A turbulent heat-flux model for buoyant flows is derived based on algebraic modeling techniques. 
Buoyancy terms are included in order to allow for the prediction of counter-gradient transport. The model 
incorporates a mixed time scale, based on both the velocity and thermal turbulence time scales and relaxes 
the assumption of a constant turbulent Prandtl number. Thus simplified, the algebraic equations, which 
are explicit in the heat fluxes, depend explicitly on buoyancy, the mean velocity and thermal fields, the 
turbulent kinetic energy and its dissipation rate and the temperature variance and its dissipation rate. Near- 
wall corrections are formulated to make the model asymptotically consistent as a wall is approached and 
this allows the heat flux equations to be integrated to the wall once the transport of the temperature 
variance and its dissipation rate and the velocity field are known. The nonbuoyant version of the model 
has been validated previously, therefore, the present model is applied to near-wall buoyant turbulent flows 
only. Test cases considered include fully developed horizontal channel flows with a heated bottom wall 
and turbulent flow in a heated vertical pipe. The prediction of both flow types by the present model are in 
agreement with experimental data. In view of these results, the present model is found to be capable of 
capturing the essential physics and yields asymptotically correct results near the wall for both buoyant and 

nonbuoyant incompressible turbulent flows. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

The necessity to model incompressible near-wall tur- 
bulent flows for a wide range of practical engineering 
problems has been recognized recently. Since then, a 
number of near-wall two-equation and second-order 
models have been proposed and validated against 
various turbulent flows [1, 2]. There are many engin- 
eering problems where buoyancy plays an important 
role. Different attempts to model buoyancy effects 
have been made in the past [3-14]. However, most of 
these efforts are not concerned with near-wall models ; 
rather they concentrate on the modeling of buoyancy 
effects in a high-Reynolds-number medium. As a 
result, few studies have been carried out on near-wall 
buoyant turbulent flows. 

In buoyant flow modeling, the Boussinesq hypoth- 
esis is usually invoked to simplify the governing equa- 
tions. Even then, the uncoupled flow approximation 
[15] cannot be assumed. For nonbuoyant, non- 
isothermal incompressible flows, the temperature field 
is affected by the velocity model, but not the other 
way around. On the other hand, heat flux modeling 
has a significant effect on the overall calculations of 
buoyant turbulent flows. Consequently, a constant 
Prt assumption may not be very appropriate. This 
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assumption is also inappropriate for incompressible, 
nonisothermal near-wall flows where Pr t increases 
rapidly as the flow approaches the wall, depending on 
the thermal boundary conditions and the fluid Pr [ 16, 

17]. In spite of this, numerous turbulence models 
invoking constant Pr t have been proposed. Among 
the more representative work are the one-equation [3] 
and two-equation studies [4-7], where wall functions 
are used to link the properties at the first grid point 
to the wall. Since all these models invoke an eddy 
viscosity hypothesis for the Reynolds stress tensor 
and a constant Pr t for the Reynolds heat flux vector 
ui0, they cannot predict counter-gradient heat trans- 
port. Furthermore, they do not allow for a variable 
time scale ratio R and the predictions are quite sen- 
sitive to the specific value chosen for Pr t. These charac- 
teristics are important for the prediction of buoyant 
turbulent flows [9]. Another assumption that is very 
questionable in these models is the setting of uO equal 
to vO in order to obtain the correct sign for uO [8]. On 
the other hand, if Favre averaging [ 10] is adopted, the 
resulting model could be applied to cases with larger 
temperature variations, since a Boussinesq assump- 
tion is not necessary for the density field. However, it 
still suffers the same limitations as far as counter- 
gradient transport and R are concerned. 

Several algebraic models derived with or without 
the use of a local equilibrium turbulence assumption 
have been proposed [8, 11-13]. In all but ref. [13], 0 2 
is calculated from an equilibrium model with a con- 
stantR. On the other hand, the transport equations 
for 0 2 and ~0 are solved in ref. [13]. These models are 
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NOMENCLATURE 

Cf skin friction coefficient 
Cp specific heat at constant pressure 
D pipe diameter 
Dej production tensor, 

Gq Grashof  number  based on qw, Gq = g 
4 -  2 flD q,,,/(pCpTv ) or Gq = gflH4Elw./ 

(pCoc~v ~) 
G generation/destruction of k due to 

buoyancy, G = -gflu,O 
G~j generation/destruction of u ~  due__ to 

buoyancy, G~j = - g f l u f l - g f l u f l  
G~ generation/destruction of e due to 

buoyancy, 
G~ = -gfl(~3u,./axk) (c~O/Oxk) 

g acceleration due to gravity 
g, ith component of gravity vector 
H, h channel width and half width, 

respectively 
k turbulent kinetic energy 
Nu Nusselt number, 

Nu = q,,,D(O,v-- Om)/(pCpO 0 or 
Nu = glwH(Ow- ~)m)/(pCpoO 

n~ ith component of the unit  normal 
vector, positive outward from wall 

p fluctuating pressure 
/~ production of k due to mean shear 
Pr Prandtl number  
P~j production of Reynolds stresses due to 

mean shear 
Po production of temperature variance, 

Po = - ukO(OO/~x~) 
Pr, turbulent Prandtl  number  
P* production of temperature variance 

due to streamwise mean 
temperature gradient 

qw mean wall heat flux 
R time scale ratio, R = (k/e)/(O~/e.o) 
Re Reynolds number  based on bulk 

velocity, Re = UmD/v or 
Re = UmH/v 

Re, Reynolds number  based on ~,  
Re~ = fi~h/v or Re~ = gt~R/v 

Re, turbulent Reynolds number, 
Ret = k:/(ve) 

St Stanton number, 
St ~- ~lw/ {~OCpUm( Ow-- Om) }, 
St = Nu/(RePr) 

g~i mean strain rate tensor, S,, = 
(1/2) (a ~7~/Ox/ + a [7~/Ox,) 

t time 
Um bulk mean velocity 
g_7~ ith component  of the Reynolds 

averaged velocity 

(_7, I7, W Reynolds averaged velocities along 
x-, y- and z-directions 

U + mean velocity normalized with u~ 
u, ith component  of the fluctuating 

velocity 
u, v, w Reynolds fluctuating velocities along 

x-, y- and z-directions 
u~ friction velocity, u~ = xfrw/p 
& average friction velocity over hot and 

cold wall 
normalized turbulent shear stress, 
- - ~  + = - ~ /u~ 

mean rotation rate tensor, V¢0 = 
(1/2) (a O~/aXi -- O G,/ax,) 
ith component  of the coordinate 
coordinates in streamwise, wall- 
normal and transverse directions 
normalized wall-normal coordinate, 
y+ = yu/v .  

~ +  

.V i 

X, y ,  Z 

V ~ 

Greek symbols 
thermal diffusivity 

c~ thermal eddy diffusivity 
fl coefficient of thermal expansion, 

= - (l/p) (~p/aO)p 
~: dissipation rate of k 
~w e, at the wall, ew = v(a2k/Oy2)w 

modified dissipation rate, ~ = e -  
2 v ( a ~ / @ )  2 

~, modified dissipation rate, 
= e -  2vk/y 2 

~0 dissipation rate of temperature 
variance 

~,0 modified dissipation rate of 
temperature variance, ~0 = e0 -  

~* modified dissipation rate of 
temperature variance, 

~'~ = ~o - ~ ( ~ -  ~ ) / y ~  

~o,w ~0 at the wall, e0 = (~/2)(~2~/@2)w 
~0,. dissipation rate of the heat flux vector 

u,0 
v fluid kinematic velocity 
v, eddy viscosity 
p mean density 
0 Reynolds averaged temperature 
~ m  bulk mean temperature 
O~ friction temperature, O~ = qw/(pCpu 0 
0 Reynolds fluctuating temperature 
~2 temperature variance 
~w wall shear stress. 
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suitable for buoyant flows because they are able to 
replicate counter-gradient diffusive transport. Still, 
three of these models specify a constant R a n d  invoke 
an equilibrium assumption to calculate 0 2 . Further- 
more, all but ref. [8] use wall functions to bridge the 
gap to the wall. The appropriate way to specify the 
wall functions for complex buoyant flows is not obvi- 
ous at all. A further difficulty could arise in the 
algebraic models assumed for u-~.. The matrix inver- 
sion of the system of algebraic equations could lead 
to numerical difficulties [18]. This is true even for 
models assuming local equilibrium turbulence, but 
can only get worse if this assumption is relaxed. On 
the other hand, Uspuras and Poskas [14] propose a 
full second-order model. They calculate 02 and e0 from 
their own transport equations, thus allowing for a 
variable R. The second-order model has not been 
widely tested and only sparse comparison with exper- 
iments is given by the authors. Furthermore, the 
approach using a full second-order closure is not very 
attractive because of  the large numbers of equations 
involved. For  a three-dimensional problem, the num- 
ber of coupled partial differential equations to be 
solved consist of five mean flow equations, seven Rey- 
nolds-stress equations, five heat-flux equations plus 
an equation of state ; thus givin a total of 18 equations. 
Therefore, it is important to seek simpler models that 
could correctly replicate the essential physics of wall- 
bounded buoyant flows. 

It is clear from the above brief review that none of 
the models proposed to date are fully satisfactory 
when applied to calculate a wide variety of buoyant 
flows. The present objective is to propose a more 
general near-wall model for buoyant turbulent flows. 
It is based on a Reynolds-stress model for the velocity 
field and an explicit algebraic heat flux model for the 
temperature field. The latter model, which has been 
developed for near-wall nonbuoyant flows [19], will 
be modified with appropriate terms added to account 
for buoyancy effects. The additional buoyancy terms 
do not behave correctly in the near-wall region. There- 
fore, the near-wall corrections formulated for non- 
buoyant flows have to be re-examined and modi- 
fications are derived to ensure asymptotic consistency 
near a wall. Furthermore, the heat-flux model is 
derived to allow an asymptotically correct behavior 
for vO. The Reynolds-stress model is based on the 
nonbuoyant near-wall model of So et aL [20]. Since 
additional generation/destruction terms due to buoy- 
ancy appear explicitly in the equations, the pressure- 
strain correlation model [21] adopted has to be 
improved accordingly. The dissipation-rate equation 
is modified by including a buoyancy term to model a 
corresponding one appearing in the exact equation. 
Thus formulated, the modeled equations for u~j, e, 
and e0, plus an explicit algebraic equation for u,O, form 
the basis of the present model. 

The model is validated against benchmark flow 
cases. Wall-bounded buoyant flows could involve 
rather complicated physics, even though their 

geometry might be relatively simple. Petukhov and 
Polyakov [22] refer to the direct influence of buoyancy 
on the turbulence field as the structural effect and that 
on the mean field as the external effect. In developing 
vertical pipe flows with buoyancy influence, both 
effects appear at the same time. This is in contrast to 
horizontal channel flows with vertical stratification 
where only the structural effect is present. Since the 
two effects usually act in opposite directions, thus 
leading to opposite changes in parameters such as Cf, 
Nu and St, the resulting flow field is determined by 
a complicated interaction of structural and external 
effects [22]. It seems that most modeling studies dis- 
cussed above consider flows where external effect is 
more important. Thus, model deficiencies are not easily 
revealed by these calculations. If, on the other hand, 
structural effect becomes more pronounced, then these 
deficiencies could hopefully become obvious immedi- 
ately. In view of these differences, at least one of the 
test cases should involve structural effect alone. 

NEAR-WALL MODIFICATIONS OF THE 
REYNOLDS-STRESS EQUATION FOR BUOYANT 

FLOWS 

If  the Boussinesq approximation is invoked for 
buoyant turbulent flow, the Reynolds-averaged equa- 
tions for tTi, u~ ,  e, u,0, 02 and ~0 can be reduced to 
a form similar to the incompressible equations with 
additional buoyancy terms appearing in the t.Tt, u~., e 
and ui0 equations only [23]. The mean flow equations 
are coupled because of__the presence of the extra buoy- 
ancy term. Also, the 02 equation needs to be solved, 
even if a second-order model is used to resolve u,0 
because of  the extra buoyancy term. For  high-Re 
flows, the molecular diffusion terms can be neglected, 
but they should be retained for near-wall flows. 
According to Gebhart et al. [24], the Boussinesq 
approximation is valid if R0 =gflL/Cp<< 1, 
R 1 = Aplp << 1, R0 << RI and there is no extreme vari- 
ation of either Rt or the reference density P~o. These 
conditions are valid for a wide range of practical prob- 
lems. The extra terms appearing in u~,  e and u,O 
are all exact within the framework of the Boussinesq 
approximation. However, it will be seen later that 
certain model terms also need to be modified to 
account for the buoyancy effects. 

Near-wall nonbuoyant, incompressible flow model- 
ing of ~ using the high-Re proposals of Speziale et 
al. [21], Hanjalic and Launder [25] and Kolmogorov 
[26] for the pressure strain tensor, the turbulent 
diffusion tensor and the isotropic part of the dis- 
sipation rate tensor, respectively, has been reported 
previously [20]. The present approach modifies and 
extends this near-wall model to buoyant turbulent 
flows. According to Launder [23], an extra term due to 
buoyancy should appear in the pressure-strain tensor, 
which can be written symbolically as 

=efau, H,j + SEC| = n b + n , g + n ~ .  (1) 
V-~i] 
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The first two terms are identical to those appearing in 
the nonbuoyant  case and the model of [21] can be 
assumed for these terms. As for the third term, 
Launder [23] suggests relating it to the gener- 
ation/destruction of ~ due to buoyancy. The term 
proposed is 

nk  = - c~ ( u , , -  ~,~,,c,), (2) 

where C6 = 0.3 is suggested. There is no need to add 
extra terms to account for the buoyancy effects 
explicitly in the turbulent diffusion and dissipation 
models [23]. Therefore, with equation (2) added to 
II~/, the exact and the high-Re modeled ~ equations 
can again be analyzed for asymptotic consistency fol- 
lowing the procedure outlined in refs. [27, 28]. 

In the present approach, it is assumed that u, c, w 
and 0 can be expressed as asymptotic series in terms 
of y, with the coefficients being random functions of 
t, x and z. Again, the wall temperature fluctuations 
are assumed to be zero. Although this assumption has 
only been tested for nonbuoyant  flows [17], it could 
be expected to be valid for buoyant  flows because, in 
the immediate vicinity of the wall, viscous effects are 
dominant ,  while buoyancy effects are not. Using these 
expansions, it can be shown that both the modeled 
and exact buoyancy generation terms are of higher 
order than the nonbuoyant  terms and, thus, will not 
influence the near-wall balance of the equations. Even 
the buoyancy term l I  3 will only influence the near- 
wall balance in the v~-equation if and only if the grav- 
ity vector has a component  parallel to the wall. In this 
case, the term is of order ),2, the same as the lowest 
order nonbuoyant  term. If, on the other hand, the 
gravity vector is normal to the wall, this term is again 
of higher order. Therefore, it will not affect the near- 
wall balance of the v:-equation. 

In p__revious heat transfer modeling studies [16], uO 
and w0 are not modeled to the proper order so that 
additional wall damping functions could be avoided. 
This rationale is also applied to buoyant  flow mode- 
ling. Thus, the modeling uO and wO would not be of 
order y2, but of some higher order. Furthermore, the 
additional buoyancy term in the II~ model would also 
be of an order higher than y2. In this case, even the 
near-wall balance of the v2-equation will not be influ- 
enced by the buoyancy terms and no near-wall cor- 
rection to 113 is needed. Therefore, it is not necessary 
to introduce modifications to the near-wall cor- 
rections of the incompressible near-wall Reynolds- 
stress model [20], which can be summarized as 

(3a) 

= ± + ' " '  

(3b)  

H , j  = - ( 2 C l e +  C~*P)( I  - . [w , )b , /+C2(1  - . L , )  

1 
x ~:(b,kbki - ~ 60FI ) - (~] - ~*[~, )(Pu -- bijfi) 

C* 

V - -  f l kn  / 

,7 ( aujuG 
+ax~ / axe) ') - -  I J - -  / / k / / •  

+ c ~ - I V  ~-&-L"lnknpn,ns, (3c) 
-~ (JXm \ OXm ] 

2 
r,, = ~ (1 --fwt)e 6,j +.K, 

,~" U / U j  q -  UiUknkrt: q- UjUk//kni Jr-//injukutnkrtl 
x - (3d) 

k 1 + 3ukutnknt/2k 

where Q,C~,C*,C2,  c~, c~*, flu ?,, 7* and C* are 
specified in ref. [20] as 0.11, 3.4, 1.8, 4.2, 0.4125, 
-0 .29 ,  0.2125, 0.0167, 0.065 and 1.3, respectively, 
while 11 = b~/bo, b o = u i u j ( 2 k ) -  (1/3) 6 u and , L i  = 
exp [-(Ret /200)  2] is introduced to account for the 
near-wall effects. Note that G u is exact and does not 
need modeling. 

NEAR-WALL MODIF ICATIONS OF THE 
DISSIPATION-RATE EQUATION FOR B U O Y A N T  

FLOWS 

The extra term due to buoyancy in the t-equation 
is proportional to e,01 in the ui0 equation. For non- 
buoyant  flows, e0i is zero away from the wall because 
there is no isotropic first-order tensor. However, 
buoyancy generates increased anisotropies and thus 
e0, could be nonzero, even far from a wall. In view of 
this, there needs to be a buoyancy term in the high-Re 
e-equation. Here, the model suggested by Bergstrom et 
al. [29] is adopted. Using a turbulent diffusion model 
similar to the one for ~ ,  the modeled e-equation for 
buoyant  flow is given by 

( 3 s )  ~ ( k _ _ O s \ V ~ x k  gxl \  ~?xs) 
Dt Oxk 

e -  g c 
+C,:] ~ P - G 2 k ~ : + G 3 ~ G + ¢ ,  (4) 

where C,  C,:, C:z, C:3 are assigned values 0.11, 1.5, 
1.83, 1.5, respectively, and ~ is introduced to render 
equation (4) valid as a wall is approached. 

The form of ~ is similar to that introduced in ref. 
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[20] for incompressible, nonbuoyant flows, but it 
needs modification to account for the buoyancy 
effects. Taking into account the buoyancy terms in the 
k-equation and adopting the approach proposed by 
Shima [30], the following compatibility condition is 
obtained for e, or : 

de c ~z 02 [ c32k "~ 
Ot v a x - ~  + v - -  - -  -- OXk OXk kOXm OXm) 

0 = [ _ _  at_7~\ 0 = - -  

This condition stipulates that equation (4) should 
behave as equation (5) at the wall. Depending on the 
gravity vector, the buoyancy term in equation (5) can 
be nonzero as y ~ 0 ; therefore, it must be accounted 
for in ~. This buoyancy term is proportional to 
e0j. Furthermore, the buoyancy term in the exact 
e-equation can be shown to be given by 
G~ = 2[v/(v+~)]gifleo~. These analyses suggest that 
near-wall buoyancy effects in equation (4) can be 
accounted for by adopting G and G~ in ~ to give 

I / e -- g2 eg 
~. = f w E ~ - L ~ P + M ~  - N ~  

where L=2 .25 ,  M = 0 . 5  and N = 0 . 5 7  are as 
assumed in ref. [20] and the damping function in equa- 
tion (6) is given in ref. [20] asfw2 = exp [-(Ret/40)2]. 
Lai and So [28] have suggested a model term that 
reproduces the asymptotic behavior of e0~ near a wall. 
Their model is give by 

eoi = 1 ÷ (uiO ÷ ukOnkni). (7) 

Therefore, the final proposal for ~ for buoyant flows 
is obtained by substituting equation (7) into equation 
(6). 

EQUATIONS FOR THE TEMPERATURE 
VARIANCE AND ITS DISSIPATION RATE 

There are no extra terms due to buoyancy in the 
equations for 02 and e0. Consequently, the modeling 
of these equations can be accomplished just as in the 
nonbuoyant case. In other words, the modeled equa- 
tions of So and Sommer [16] can be adopted without 
modification for buoyant flows. These equations are 
quoted here as 

o ,  + co 

-2uj0~-2e0, (8) 

Deo 0 [ aeo'X a {~ k__aeo'x 
- ~ - / c t ~ - - / +  ~---lU~o-ukUj~--| -~  cxj\ oXj vxk\ e vx j  

e 0 e 
+ C,n ~ Po + CdE -~ Po 

Co~ go g 
+C~3 ~ P - G . ~ e o - G s # e o + ~ . o ,  (9a) 

go e e f  
~o=fw,~o (Cd4--4)VeoWCds#eo 

t0 ) 
+ ( 2 - C d , - P r C d 2 ) ~ P *  , (9b) 

where ~-0 is the near-wall correction function, 
fw,, ° = exp [ -  (Re,~80) 2] is a damping function intro- 
duced to account for near-wall viscous effects, and 
C~, C, o, Cdl, Cd2, Cd3, Cd4, Cd5 are specified in ref. [16] 
as O. 11, O. 11, 1.80, O, 0.72, 2.20, 0.80, respectively. 

NEAR-WALL MODIFICATIONS OF THE HEAT- 
FLUX MODEL FOR BUOYANT FLOWS 

It has been shown that predictions of uO using two- 
equation eddy thermal diffusivity models are greatly 
in error [19]. Consequently, an algebraic heat flux 
model based on the transport equations for 0 2 and e0 
has been proposed and the predicted u0 is found to be 
in good agreement with the data, and with that given 
by a second-order model [9]. Since it is important 
to model u0 correctly in buoyant flows, the present 
approach extends the model of ref. [19] to account for 
buoyancy effects in near-wall flow calculations. There 
are two sources of extra terms due to gravity in the 
ui0 equations. One is the explicit exact term, which 
does not require modeling in the equation. Another 
appears in the model proposed for the pressure-scram- 
bli_ ng term. Using the high-Re version of the modeled 
u,O equation [21], the suggestions of Launder [23] for 
the buoyancy term and a fixed time scale [19], the u,0 
equation can be modeled to give 

Duff 0 f k/__OUkO 
o ,  ÷"k"' 

00 _~TAO aOi 
- -  n i u  j _-:-- Oxj J Oxj 

-- ~'~lO ~/ l -~Ui  z (f2OUJU~x ~j 

÷ C3 og,fl~ -- g, fl'O r ,  ( ] O) 

where C,o = 0.11 and C1o = 3.28 are suggested. Note 
that the dissipation of the turbulent heat fluxes is set to 
zero for the flows considered here and the suggestion 
C3o = C2o = 0.4 [23] is adopted. The reduction of 
equation (10) into an algebraic equation for u,O fol- 
lows naturally from the assumption of local equi- 
librium of turbulence. Thus obtained, the algebraic 
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equations are not explicit in terms ofufl and numerical 
instability could result from matrix inversion for cer- 
tain mean flow conditions [18]. So and Sommer [19] 
suggest further simplification by replacing all Rey- 
nolds flux terms on the right hand side of the implicit 
algebraic equations with gradient transport models, 
thus rendering the algebraic equations explicit. A 
detailed discussion of this is given in ref. [19]. After 
much algebra, the u~0 equation for buoyant flows can 
be written as 

- -  0~) l / k  
-u ,0  = ~t axi C/0 ~/ e --((2v~e,, 

+ (l  - c20)~,)g , ,  + (1 - c : , , )~w,~  ) i x :  

+ ~ ' k / 7 ~ . o g i p v .  (11) 

The only difference between equation (11) and that 
derived in ref. [19] is the buoyancy term. Since this 
term is of order y4, the same asymptotic behavior as 
in the nonbuoyant case can be obtained if the near- 
wall model for the eddy thermal diffusivity 
~x~ = CzlO:~k(kOZ/ggo) j2 and the eddy viscosity 
v, = CJ~k2/g for nonbuoyant flows are adopted. 
According to ref. [16], the constants and damping 
functions are given by C~, = 0.096, C~ = 0.095, .L. = 
J~, + [1 -f.~,](C:~,/Retl:4), J~, = [1 - e x p ( - y + / A + ) ]  ~, 
C~1 = 0.4/Pfl '4 for Pr < 0.1 and C~1 = O.07/Pr for 
Pr>~O.l, A~ = lO/Pr for P r < 0 . 2 5  and A ~ = 
39/Pr l:~' for Pr >~ 0.25, and f ,  = [1 +3.45Re~"2] 
tanh(y+/115). 

FULLY-DEVELOPED HORIZONTAL CHANNEL 
FLOWS WITH VERTICAL STRATIFICATION 

In the fully developed region of a horizontal plane 
channel flow with vertical stratification, there are no 
buoyancy terms in the 0 equation. Consequently, 
buoyancy acts on the turbulence field alone and only 
a structural effect is present. In view of this, the per- 
formance of the present model can be assessed against 
this flow. Experimental data for such a flow have been 
collected by Petukhov et al. [31, 32] and summarized 
by Petukhov and Polyakov [22]. They studied the flow 
in a horizontal channel with an aspect ratio of 1/45. 
In order to obtain a stable or unstable stratification, 
the top or bottom wall, respectively, was heated while 
the opposite wall was adiabatic. Likewise the side 
walls were adiabatic. Measurements were taken in the 
central region of about 30-40% of the channel width 
where~the flow was essentially two-dimensional with 
no secondary cells observed [31]. Under fully 
developed conditions, the flow becomes asymmetric 
with respect to the centerline of the channel and the 
wall shear stresses at the hot and cold walls are quite 
different. Integrating the G equation gives the fol- 
lowing : 

dU+ _ ( d U + ~  y+ 
dy + \ d y + / h  - Re~ + ~ + '  (12) 

where subscript h indicates wall condition. For this 
flow, Petukhov and Polyakov [22] derived an estimate 
for Gq~h, which is defined as the Gq in which Nu or St 
changes by 1% from its value at neutral stratification. 
Their estimate can be written as 

Gqt h = 8.07 × 10 "~prltZRe275 (13) 

The driving force for this flow is the streamwise 
pressure gradient, which is constant in both the stre- 
amwise and cross-stream directions in the fully 
developed region. In carrying out this calculation, it 
is most appropriate to match the pressure gradient, 
which can be related to Re, based on ~L, with exper- 
imental data. The second important parameter for 
buoyant flows is Gq. It can be seen from equation (13) 
that the onset of noticeable buoyancy effects depend 
on Re. Therefore, for the present calculations, it is 
decided to match Gq/Gqth rather than Gq itself. This 
allows a meaningful comparison of the results at 
different Re. Re~ is estimated from 2Re~ = Re~fCj/2, 
where (~r is calculated from a correlation given in ref. 
[22] as 

CI- Gq 
- - =  1+178.38 . . . .  (14) 
Cr.~ Pr Re2 75 

and Cf.0 is taken as an average value of three estab- 
lished correlations [22]. The calculated Cr and Nu are 
compared to the values deduced from equation (14) 
and the following correlation for Nu [32] : 

Nu Gq 
Uuc--~ = 1 +0.01 Gqt~" (15) 

In equations (14) and (15), the plus and minus signs 
correspond to unstable and stable stratification, 
respectively, while Nuo is defined for neutral strati- 
fication as 

RePrCr 
Nu~, = 

2 + (900~Re) + 5.4(Cd2) ~'~ (Pr >3 - 1) 

0 6 )  

Calculations are performed using the present model 
and a simple k-g model composed of equation (4), a 
k-equation given by one half the trace of equation 
(3a), - uW = v,(O~71c').v), - vO = (v,/er,)(aO/ay), v~ = 
C J ,  k2/'g and Pr~ = 0.9. This simple model differs dras- 
tically from the present model, in that it only solves 
two modeled equations and assumes isotropic tur- 
bulence. The wall boundary conditions are the usual 
no slip condition for the velocity and turbulence field, 
specified constant wall temperature or wall heat flux 
for the mean thermal field, zero temperature variance 
at the wall, and finite gw and go.,,. The most important 
quantities to compare are Cr and Nu because of their 
practical importance and the availability of empirical 
correlations, (14) and (15), derived from experiments. 
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Fig. 1. Comparison of calculated Cf and Nu with data under 
unstable stratification. 

Any model  calculation should at least be able to repro- 
duce the measured trends of  these parameters, even if 
some of the flow details are not  captured correctly. 

Equations (14) and (15) show that, under unstable 
stratification, both (7 r and Nu increase with increasing 
buoyancy, because the additional buoyancy terms in 
the turbulence equations are generation terms and 
thus enhance turbulence. The process can be under- 
stood if a fluid parcel transported by turbulent mot ion 
is considered. Under  unstable stratification, i.e. heat- 
ing from below, a parcel moving away from the bot- 
tom wall wilt move into a colder, heavier fluid and 
buoyancy force tends to push the parcel further than 
it would have in an isothermal flow. Conversely, a 
parcel moving towards the heated bot tom wall will 
encounter warmer,  lighter fluid and drops further 
towards the wall than in the absence o f  buoyancy. A 
comparison of  the calculated (Tr and Nu with equa- 
tions (14) and (15) shows that both the present model  
and the k-e model  are in reasonable agreement with 
the data (Fig. 1). The present model gives slightly 
better results for Cf, particularly at low Re with strong 
buoyancy effects, while the k-e model predicts Nu 
more accurately at low Re. However,  at higher Re, 
such as Re = 12 000, the present results are in better 
agreement with data for both Cf and Nu (Fig. 1). 
The present model  does a fair job  in reproducing the 
increase of  (Tf with increasing Gq/Gqth and its pre- 
dictions are in agreement with data up to 
Gq/Gqth ~ 100, while the k-e model  results deviate 
from data around Gq/Gqth = 30. On the other hand, 
the calculated Nu is in good agreement with the data 
for both models. 

Linear plots of  the velocity profiles at Re = 3300, 
Gq/Gqth = 5 5  and R e = 2 6 5 0 ,  Gq/Gqth= 120 are 
shown in Fig. 2. The calculated (Tf and Nu by the 
present model  for the Re = 3300 case are 13.73 x 10 3 
and 24.39, respectively, while they are 19.81 x 10  - 3  

and 26.90 for the Re = 2650 case. These results are 
very comparable with 13.41 x 10 3 and 17.72 for the 
Re = 3300 case, and 19.63 × 10 -3 and 20.15 for the 
Re = 2650 case obtained by Petukhov et al. [31]. On 
the other hand, the k-e model with Prt = 0.9 yields the 
following pair of  values for the two cases : 12.99 x 10 3 

1.2"] o o o % o_~e.o_o_.. - 

0.9 o 

g m  

° 

0 0.2 0.4 0.6 0.8 y/H 

Fig. 2. Linear plot of mean velocity under unstable strati- 
fication. 

and 16.08, 15.33 x 10 -3 and 17.61. At Gq/Gqt~ = 55, 
both the present model  and the k-e model yield nearly 
identical results, which are in good agreement with 
the data. Consistent with the calculated (Tf given 
above, the present model  predicts a fuller velocity 
profile than the k-e model at Gq/Gqth = 120. Both 
models predict the maximum velocity to be located in 
the upper half  of  the channel, closer to the adiabatic 
wall. The trend is opposite to that shown by the 
measurements, which have a much more marked 
maximum in the lower half  (Fig. 2). This difference is 
quite significant and needs clarification. 

According to equation (12), the velocity gradient is 
equal to the difference between (dU+/dy+)h-y+/Re~ 
and -~-6 +. A plot of  the various terms in equation 
(12) is shown in Fig. 3. It is obvious that the velocity 
gradient is very small near the centerline of  the chan- 
nel. Furthermore,  the difference between the lines cor- 
responding to (dU+/dy+)h-y+/Re~ and - ~ +  is 
small over a large port ion of  the channel. Thus, a small 
disturbance could move the location of  the maximum 
velocity, i.e. the point where the velocity gradient is 

0 4  

- 0 . 8 t  " - - G ~ +  -'. 

.1. t : ,  0 0.2 0.4 y* 0.6 0.8 1 
Fig. 3. A plot of the shear stress and derivative of mean 

velocity. 
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zero, from one half of  the channel to the other. It is 
conceivable that a weak secondary flow in the exper- 
iments could provide the necessary potential to effect 
the switch. Such a secondary flow in this test case 
could arise from a thermal instability due to the heat- 
ing from below. Furthermore,  the side walls may not 
be perfectly adiabatic, thus giving rise to a secondary 
motion due to the wall heat flux. Both these effects 
could lead to the formation of  longitudinal vortices. 
There could also be an interaction between the sec- 
ondary flow due to corner effects with buoyancy. In 
view of this, there is a variety of  possible sources for 
secondary cells that, in spite of  being very weak, could 
still be sufficient to provide the necessary potential 
to drive the velocity maximum from one half of  the 
channel to the other. This analysis casts doubts on the 
measured location of  the velocity maximum in any 
two-dimensional buoyant flow experiments. At the 
very least, this study shows that the location of  the 
maximum velocity is a very sensitive quantity to mea- 
sure and predict. 

The mean velocities are further compared in log- 
arithmic plots which show that the present results are 
in better agreement with data for high Re and weak 
buoyancy as well as for low Re and strong buoyancy 
(Fig. 4). In particular, the shape of  the velocity profile 
at Re = 2650, Gq/Gqth = 120 is correctly predicted 
using the present model. In two cases, a comparison 
is also made with the model calculations of  So et al. 
[20] for isothermal flows. It can be seen that there is a 
layer near the wall where the buoyant and isothermal 
results are essentially identical. Petukhov and 
Polyakov [22] call this region the dynamic sublayer. 
For  the case of  weak buoyancy and high Re 
(Re=  l lO00, Gq/Gqth = 5), the dynamic sublayer 
extends beyond the viscous sublayer into the buffer 
layer, while for stronger buoyancy and lower Re 

(Re = 2650, Gq/Gqth = 120), the dynamic sublayer, 
according to model predictions, is about equal to the 
viscous sublayer. This verifies the assumption that, 
near the wall, the buoyancy effects are negligible com- 
pared to viscous effects. 

The results of  0 for two cases where Re = 16 500, 
Gq/Gqth = 0.6 and Re = 11 000, Gq/Gqth = 5.0 are 
shown in Fig. 5. The present results are in better 
agreement with the data in almost the entire lower 
half of  the channel, while the k-e model yields a more 
correct prediction in the upper half. Since buoyancy 
force influences the turbulence mainly through vO, 
which is largest in the lower half of  the channel and 
smallest near the adiabatic wall, it is more important  
to have a good agreement of  the calculated tem- 
perature field with the data in the lower half of  the 
channel. This explains why the velocity profile is in 
better agreement with the present model than with the 
k-e model, even though there are significant dis- 
crepancies between the calculated and measured O in 
the upper half of  the channel. On the other hand, 
these discrepancies could affect the calculated Nu. This 
comparison, therefore, provides some insight as to 
why the simpler k-e model gives, in some cases, better 
results for Nu. Finally, sample comparisons of  u .... 
and 0r.n~ with measurements are shown in Figs. 6 and 
7. In the /'/rms case, the agreement with data is reason- 
able. On the other hand, it can be seen that 0 . . . . .  
increases with increasing unstable stratification and is 
consistent with data. However,  the quantitative agree- 
ment is poor. 

DEVELOPING TURBULENT FLOW IN A HEATED 
VERTICAL PIPE 

Mixed convection in a vertical pipe has been studied 
by numerous researchers. The vast majority of  the 
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experimental investigations are for the case of a stable 
stratification, i.e. upward flow with a heated wall. 
Among these studies, the experiments of Polyakov 
and Shindin [33] are of particular interest. There are 
not as many investigations on flow with an unstable 
stratification, i.e. downward flow in a heated pipe. 
However, the summary of research [22] could be men- 
tioned. Since most of these studies do not provide 
accurate measurements of turbulence quantities, com- 
parisons can only be made with Cf, St and possibly 0 
and O. The calculations of the various cases were 
carried out in much the same way as for the thermal 
entrance region calculations for nonbuoyant flow in a 
pipe [19], i.e. starting with a fully developed velocity 
profile for isothermal flow, a uniform inlet tem- 
perature and the thermal turbulence statistics as 
described in ref. [19]. With the exception of the mean 
wall thermal boundary conditions, other conditions 
similar to those invoked for the horizontal channel 
flow with vertical stratification are also adopted. For 
the Polyakov and Shindin [33] flow cases, a constant 
wall heat flux is specified just as in the experiments. 

A comparison of the calculated and measured Nu 
variations with x/D is shown in Fig. 8. On first sight, 
both the measurements and calculations paint a rather 
confusing picture. With increasing Gq, Nu first 
decreases to values smaller than the nonbuoyant case. 
However, as Gq increases, Nu at a given location starts 

to increase. This behavior can be explained by the 
interplay between the structural and external effects 
of buoyancy. When buoyancy is small, the structural 
effect, i.e. the direct influence of buoyancy on the 
turbulence field, is more important. As a result of 
stable stratification, the turbulence intensity is 
decreased and, consequently, Nu decreases. With 
increasing Gq, a point is reached where the structural 
effects are no longer dominant. Rather, the external 
effect, i.e. the direct influence of buoyancy on the 
mean field, becomes more important. At this point the 
turbulence intensities become very small, therefore, a 
further decrease in intensities no longer exerts a major 
influence. Instead, the behavior resembles the laminar 
case in which Nu increases monotonically with 
increasing buoyancy influence. This behavior is 
confirmed by the plots of St and Cr shown in 
Fig. 9 as a function of the buoyancy parameter, 
E = [Gq/Reapr] t/2, which appears naturally in the gov- 
erning equations if they are nondimensionalized con- 
sistently [34]. The calculated results shown in Fig. 9 
correspond to the cases where the Cr and St were 
determined at x/D = 53 for the experiments of 
Polyakov and Shindin [33], and at x/D = 100 with 
reported mean flow measurements. The comparison 
at different x/D is justified because the calculated Nu 
changes very little beyond x/D = 40. 

It can be seen from both Figs. 8 and 9 that the 
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present model essentially reproduces the correct 
behavior of Nu, St and G. There are, however, some 
discrepancies between the calculations and measure- 
ments. The point at which the calculated integral par- 
ameters deviate from their nonbuoyant value occurs 
at too high a value of E or Gq. The magnitude of the 
decrease in St is under-predicted, while the change 
of Ct is over-estimated. A further discrepancy is the 
behavior of Nu with increasing streamwise distance at 
high Gq. For the two highest Gq, the data show that 
Nu is increasing beyond x/D = 35. The calculations 
fail to reproduce this trend. In fact, it is not possible 
to obtain results beyond this point for the highest Gq. 
The reason for this can be explained by examining 
the behaviour of the measurements. The Nu increase 
beyond x/D = 35 is due to the fact that the flow 
becomes more and more like a laminar flow, for which 
Nu is higher at this Gq. This means that the turbulence 
has been substantially suppressed. When the cal- 
culations are examined at the last downstream 
locations where the results are available, it could be 
seen that in the immediate near-wall region, u~u~ are 
essentially zero. In other words, the production due 
to mean shear is no longer sufficient to sustain the 
turbulence against destruction due to dissipation and 
buoyancy. Since the present model is not designed to 
handle reverse transition, it is not possible to calculate 
beyond this point. 

The discrepancy in the integral parameters can be 
correlated to discrepancies in the mean flow profiles. 
Figure 10 compares the calculated l_7 and ~ to the 
measurements of Polyakov and Shindin [33]. Again, 
the comparisons are made at x/D = 53. The predicted 
trend is correct, i.e. the velocity profile becomes fuller 
with increasing buoyancy. However, the experimental 
results show a rather marked maximum of t_7 at 
y/R,~ 0.3 for the higher Grashof numbers 
(Gq = 1.3 x 10  7, Gq = 1.5 × 107). On the other hand. 
the calculations show a very weak maximum at best. 
It should be noted that, for even higher Gq, the 
maximum observed in the experiments becomes 
weaker [33]. This behavior of O is very much in line 
with the observed St and Cr. The calculated tern- 

perature profiles are in reasonable agreement with the 
data for the cases at Gq = 9 x 10 6 and Gq = 1.5 x 10 7, 

but in poor agreement at Gq = 1.3 x 10 7. This poor 
agreement cannot be explained easily because the 
measurements are not very consistent with increasing 
Gq, while the predictions are. 

There is much less experimental work on flows with 
unstable stratification. Therefore, comparison 
between model calculations and data are limited to 
integral parameters only. A comparison of the cal- 
culated St with the data of Petukhov and Polyakov 
[22] can be made. They found that, for 0.6 ~< Pr <~ 20, 
the parameter StPrL'4(l +St ~/2) collapses to a single 
curve as a function of E, irrespective of the value of 
Pr. To test the ability of the present model to capture 
this feature, several calculations are carried out at 
Pr = 0.71 and 5. The calculated StPrl/4(l+St~/2) is 
compared with a curve fit through the data presented 
by Petukhov and Polyakov [22] in Fig. 11. The 
StPr~:4(1 +St ~/2) results collapse into a single cor- 
relation for the two Pr considered. Furthermore, the 
predictions are in good agreement with the curve fit, 
and the discrepancy is well within the scatter of exper- 
imental data shown by Petukhov and Polyakov [22]. 
Therefore, this comparison shows that the present 
model is capable of capturing the basic physics of 
convective heat transfer in a vertical pipe under 
unstable stratification. 

CONCLUSIONS 

A turbulence model has been proposed for near- 
wall flows with buoyancy influence. The model is 
based on the transport equations for u~,  e, 02 and E0. 
Additional terms, both exact and model terms, have 
been introduced compared to the nonbuoyant flow 
model in the ~ and e, equations and, where appro- 
priate, near-wall corrections are introduced in order 
to obtain the proper asymptotic behavior as the wall 
is approached. The turbulent heat fluxes are calculated 
using an explicit heat flux model with extra terms due 
to buoyancy added. A near-wall damping function 
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identical to its n o n b u o y a n t  coun te rpa r t  is used to 
enforce the correct  asymptot ic  behav ior  for - vO. 

The model  is val idated against  two different types 
of  in ternal  flow. One is a fully developed hor izonta l  
p lane channe l  flow wi th  vertical stratification, while 
the o ther  is the flow in a heated  vertical pipe. Fo r  b o t h  
geometries,  calculat ions are per formed for stable and  
unstable  stratifications. In general,  the model  results 
for integral  quant i t ies  are in good agreement  with  
data  and  reflect the p roper  physics. There  are some 
discrepancies between the da ta  and  calculat ions for 
mean  flow and  turbulence quantit ies.  However,  in 
view of  the complexity of  the flows studied, these 
discrepancies are no t  too  severe. The model  correctly 
predicts the t rend of  enhanced  turbulence with 
increasingly uns table  stratif ication and  the reduct ion 
of  the turbulence intensity when  the stratif ication is 
stable. The n o n b u o y a n t  version of  the model  has  been 
applied to a wide variety of  incompressible  flows with 
and  wi thout  heat  t ransfer  and  good correlat ions are 
obta ined  [16, 19, 20]. Together  these results show tha t  
the present  model  can  be applied to buoyan t  as well 
as n o n b u o y a n t  incompressible  near-wall  flows. 
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